
План изучения Python для школьника 9–11-го класса. 

Учтены: 

 ограниченный объём времени (учёба + подготовка к экзаменам); 

 интерес к реальным проектам и «видимому» результату; 

 необходимость сочетать теорию с практикой без перегрузки. 

Принципы обучения 

1. 20–40 минут в день — лучше регулярно, чем редко по 4 часа. 

2. Каждый этап — мини-проект (чтобы видеть результат). 

3. Минимум «сухой» теории — только то, что нужно для задачи. 

4. Использование школьных знаний (математика, логика, английский). 

5. Портфолио из 5–7 проектов к концу обучения. 

 

Этап 1. Первые шаги (2–4 недели) 

Цель: написать первую программу, понять, как запускается код. 

Что изучить: 

 установка Python и VS Code/PyCharm Community; 

 первая программа: print("Привет, мир!"); 

 переменные и типы данных (int, float, str, bool); 

 ввод с клавиатуры: input(); 

 арифметические операции. 

Практика: 

 калькулятор для расчёта среднего балла по предметам; 

 программа, которая спрашивает имя и выводит приветствие. 

Ресурсы: 

 официальный туториал Python (раздел «Beginners»); 

 видео «Python для школьников» (каналы «Хауди Хо», «Поколение Python»). 

 

Этап 2. Логика и циклы (3–5 недель) 

Цель: научиться управлять ходом программы. 

Что изучить: 

 условия if-elif-else; 

 циклы for и while; 

 операторы сравнения и логические операторы (and, or, not). 

Практика: 

 игра «Угадай число» (компьютер загадывает, игрок угадывает); 



 программа для расчёта сложных процентов по вкладу; 

 вывод таблицы умножения с помощью цикла. 

Совет: рисуйте блок-схемы перед кодом — это связывает логику и программирование. 

 

Этап 3. Функции и списки (4–6 недель) 

Цель: писать модульный код и работать с коллекциями данных. 

Что изучить: 

 функции (def, аргументы, return); 

 списки, методы append(), remove(), индексация; 

 строки и методы работы с ними; 

 основы отладки (чтение ошибок, print() для проверки). 

Практика: 

 список дел (To-Do List) с добавлением и удалением задач; 

 программа для анализа оценок (среднее, максимум, минимум); 

 шифр Цезаря (сдвиг букв в строке). 

Ресурс: курс «Python: основы и применение» на Stepik (русскоязычный, с практикой). 

 

Этап 4. Файлы и ошибки (3–4 недели) 

Цель: сохранять данные и обрабатывать исключения. 

Что изучить: 

 работа с файлами (open(), read(), write()); 

 обработка ошибок (try-except); 

 формат CSV (простейшая работа с таблицами). 

Практика: 

 дневник оценок, который сохраняет данные в файл; 

 программа для поиска слов в тексте (например, в сочинении). 

Совет: начните вести журнал ошибок — записывайте, что сломалось и как починили. 

 

Этап 5. Первые «полезные» проекты (6–8 недель) 

Цель: применить знания к реальным задачам. 

Выбор проектов (сделайте 2–3): 

1. Калькулятор ИПК (индивидуальный пенсионный коэффициент) — использует 
математику из обществознания. 

2. Анализатор текста — считает слова, предложения, частотные слова в тексте (связь с 
русским/литературой). 



3. Таймер для Pomodoro — помогает учиться по методу интервалов. 

4. Бот для напоминаний (через time или schedule). 

5. Визуализация данных — график роста растений (используйте matplotlib). 

Что освоите: 

 структурирование кода; 

 работу с внешними модулями; 

 пользовательский ввод и вывод. 

 

Этап 6. Веб и API (4–6 недель, по желанию) 

Цель: понять, как программы общаются с интернетом. 

Что изучить: 

 библиотека requests (запросы к сайтам); 

 JSON-данные; 

 простейший парсинг (извлечение информации с веб-страницы). 

Практика: 

 программа, которая показывает погоду (через открытый API); 

 бот, который присылает факты о космосе (API NASA); 

 парсер новостей с образовательного сайта. 

Ресурс: документация requests, туториалы на Real Python. 

 

Этап 7. Подготовка к олимпиадам/проектам (по желанию) 

Если интересно соревновательное программирование: 

 сайт Codeforces (раздел «Div. 4»); 

 книга «Программирование: теоремы и задачи» (А. Шень); 

 разбор задач с муниципальных этапов ВсОШ по информатике. 

Если интересует прикладное программирование: 

 создайте портфолио на GitHub (5–7 проектов с описанием); 

 попробуйте Flask (простейший веб-сайт с калькулятором); 

 изучите Git (базовые команды: commit, push, pull). 

 

Как организовать процесс 

1. Расписание: 

o 3–4 раза в неделю по 30–40 минут; 

o 1 раз в неделю — «проектный день» (1,5 часа на новый проект). 

2. Фиксация прогресса: 



o тетрадь/Notion/Google Docs — темы, ошибки, идеи; 

o GitHub — код проектов. 

3. Поддержка: 

o школьные кружки по программированию; 

o Telegram-чаты по Python для школьников; 

o форумы (Stack Overflow на английском — с переводчиком). 

4. Мотивация: 

o показывайте проекты друзьям/учителям; 

o участвуйте в школьных хакатонах; 

o ставьте маленькие цели («Сегодня добавлю функцию в калькулятор»). 

 

Что НЕ делать 

 не пытайтесь выучить всё сразу; 

 не копируйте код без понимания (лучше 10 строк своего, чем 100 чужих); 

 не бойтесь ошибок — они часть обучения; 

 не сравнивайте себя с другими (у всех свой темп). 

 

Итоговый «чек-лист» к 11-му классу 

К концу обучения у вас будет: 

 5–7 рабочих проектов в портфолио; 

 понимание основ синтаксиса и логики Python; 

 опыт работы с файлами и внешними API; 

 навык отладки и поиска решений; 

 аккаунт на GitHub с чистым кодом; 

 уверенность, чтобы продолжить в вузе или на курсах. 

Главное: программирование — это творчество. Пробуйте, ошибайтесь, исправляйте — и у 
вас всё получится! 

 

Источники: 

1. https://clubpixel.ru/sozdanie-igr-na-pajton/tpost/ghtkknrah1-12-besplatnih-urokov-po-python-
dlya-shko 

2. https://blog.pixel.study/python-dlya-detej/uroki-python-dlya-podrostkov-kak-napisat-pervyj-kod 
3. https://mmx2024.ucoz.net/programming_for_beginners.html 

 

https://clubpixel.ru/sozdanie-igr-na-pajton/tpost/ghtkknrah1-12-besplatnih-urokov-po-python-dlya-shko
https://clubpixel.ru/sozdanie-igr-na-pajton/tpost/ghtkknrah1-12-besplatnih-urokov-po-python-dlya-shko
https://blog.pixel.study/python-dlya-detej/uroki-python-dlya-podrostkov-kak-napisat-pervyj-kod
https://mmx2024.ucoz.net/programming_for_beginners.html

